Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of non-thermal transient plasma for enhanced flame ignition in C2H4air

Identifieur interne : 000D10 ( Main/Exploration ); précédent : 000D09; suivant : 000D11

The role of non-thermal transient plasma for enhanced flame ignition in C2H4air

Auteurs : D. Singleton [États-Unis] ; S J Pendleton [États-Unis] ; M A Gundersen [États-Unis]

Source :

RBID : ISTEX:982860B92A5B81E1A4BAF18DBAB5A6CD1CB3E56A

English descriptors

Abstract

Transient plasma ignition, involving short ignition pulses (typically 1050ns), has been shown to effectively reduce ignition delays and improve engine performance for a wide range of combustion-driven engines relative to conventional spark ignition. This methodology is therefore potentially useful for many engine applications; however, at present there is limited understanding of the underlying physics. Evidence is presented here for two distinct phases of the plasma-ignition process: an initial non-equilibrium plasma phase, wherein energetic electrons transfer energy into electronically excited species that accelerate reaction rates, and a spatially distributed thermal phase, that produces exothermic fuel oxidation reactions that result in ignition. It is shown that ignition kernels are formed at the ends of the spatially separated streamer channels, at the cathode and/or anode depending on the local electric field strength, and that the temperature in the streamer channel is close to room temperature up to 100ns after the discharge.

Url:
DOI: 10.1088/0022-3727/44/2/022001


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of non-thermal transient plasma for enhanced flame ignition in C2H4air</title>
<author>
<name sortKey="Singleton, D" sort="Singleton, D" uniqKey="Singleton D" first="D" last="Singleton">D. Singleton</name>
</author>
<author>
<name sortKey="Pendleton, S J" sort="Pendleton, S J" uniqKey="Pendleton S" first="S J" last="Pendleton">S J Pendleton</name>
</author>
<author>
<name sortKey="Gundersen, M A" sort="Gundersen, M A" uniqKey="Gundersen M" first="M A" last="Gundersen">M A Gundersen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:982860B92A5B81E1A4BAF18DBAB5A6CD1CB3E56A</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1088/0022-3727/44/2/022001</idno>
<idno type="url">https://api.istex.fr/ark:/67375/0T8-NS0GXKPF-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E13</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E13</idno>
<idno type="wicri:Area/Istex/Curation">000E13</idno>
<idno type="wicri:Area/Istex/Checkpoint">000131</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000131</idno>
<idno type="wicri:doubleKey">0022-3727:2011:Singleton D:the:role:of</idno>
<idno type="wicri:Area/Main/Merge">000D15</idno>
<idno type="wicri:Area/Main/Curation">000D10</idno>
<idno type="wicri:Area/Main/Exploration">000D10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The role of non-thermal transient plasma for enhanced flame ignition in C2H4air</title>
<author>
<name sortKey="Singleton, D" sort="Singleton, D" uniqKey="Singleton D" first="D" last="Singleton">D. Singleton</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Pendleton, S J" sort="Pendleton, S J" uniqKey="Pendleton S" first="S J" last="Pendleton">S J Pendleton</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Gundersen, M A" sort="Gundersen, M A" uniqKey="Gundersen M" first="M A" last="Gundersen">M A Gundersen</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Physics D: Applied Physics</title>
<title level="j" type="abbrev">J. Phys. D: Appl. Phys.</title>
<idno type="ISSN">0022-3727</idno>
<idno type="eISSN">1361-6463</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2011">2011</date>
<biblScope unit="volume">44</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="6">6</biblScope>
<biblScope unit="production">Printed in the UK & the USA</biblScope>
</imprint>
<idno type="ISSN">0022-3727</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Active particles</term>
<term>Active species</term>
<term>Appl</term>
<term>Combustion process</term>
<term>Current signals</term>
<term>Different pulse generators</term>
<term>Electron impact dissociation</term>
<term>Emission spectrum</term>
<term>Excitation</term>
<term>Gate time</term>
<term>Gure</term>
<term>Ignition</term>
<term>Ignition delay</term>
<term>Ignition delay time</term>
<term>Ignition delays</term>
<term>Ignition sites</term>
<term>Phys</term>
<term>Plasma discharge</term>
<term>Porous cathode</term>
<term>Pulse</term>
<term>Pulse generator</term>
<term>Pulse width</term>
<term>Reaction rates</term>
<term>Room temperature</term>
<term>Same angle</term>
<term>Similar ignition delays</term>
<term>Single pulse</term>
<term>Southern california</term>
<term>Spectral measurements</term>
<term>Standard conditions</term>
<term>Streamer</term>
<term>Streamer channel</term>
<term>Streamer channels</term>
<term>Thermal processes</term>
<term>Time scale</term>
<term>Track communication</term>
<term>Transient</term>
<term>Transient plasma</term>
<term>Transient plasma discharge</term>
<term>Transient plasma ignition</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Transient plasma ignition, involving short ignition pulses (typically 1050ns), has been shown to effectively reduce ignition delays and improve engine performance for a wide range of combustion-driven engines relative to conventional spark ignition. This methodology is therefore potentially useful for many engine applications; however, at present there is limited understanding of the underlying physics. Evidence is presented here for two distinct phases of the plasma-ignition process: an initial non-equilibrium plasma phase, wherein energetic electrons transfer energy into electronically excited species that accelerate reaction rates, and a spatially distributed thermal phase, that produces exothermic fuel oxidation reactions that result in ignition. It is shown that ignition kernels are formed at the ends of the spatially separated streamer channels, at the cathode and/or anode depending on the local electric field strength, and that the temperature in the streamer channel is close to room temperature up to 100ns after the discharge.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Los Angeles</li>
</settlement>
<orgName>
<li>Université de Californie du Sud</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Singleton, D" sort="Singleton, D" uniqKey="Singleton D" first="D" last="Singleton">D. Singleton</name>
</region>
<name sortKey="Gundersen, M A" sort="Gundersen, M A" uniqKey="Gundersen M" first="M A" last="Gundersen">M A Gundersen</name>
<name sortKey="Gundersen, M A" sort="Gundersen, M A" uniqKey="Gundersen M" first="M A" last="Gundersen">M A Gundersen</name>
<name sortKey="Pendleton, S J" sort="Pendleton, S J" uniqKey="Pendleton S" first="S J" last="Pendleton">S J Pendleton</name>
<name sortKey="Singleton, D" sort="Singleton, D" uniqKey="Singleton D" first="D" last="Singleton">D. Singleton</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:982860B92A5B81E1A4BAF18DBAB5A6CD1CB3E56A
   |texte=   The role of non-thermal transient plasma for enhanced flame ignition in C2H4air
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021